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ABSTRACT 

 

 Solar energy is a potentially limitless source of clean power, but needs an effective 

means of conversion and storage to be feasible. Semiconductor-metal heterostructures have 

been studied as potential photocatalysts for use in solar-to-chemical energy conversion as a 

way of converting solar energy. This thesis examines pathways towards the synthesis of 

Cu2ZnSnS4-Au, a novel semiconductor-metal heterostructure. Cu2ZnSnS4 (CZTS) is 

attractive for use in this area because it has a narrow bandgap (1.5 eV) and is made of 

relatively earth-abundant and non-toxic elements.  

 There are four methods studied in this thesis for the fabrication of CZTS-Au, two use 

AuCl3 as a precursor and two utilize pre-formed Au nanoparticles. Both precursors were 

studied under thermal and photochemical deposition conditions. The resulting products were 

characterized to determine the most effective pathway to fabricate these heterostructures. 

AuCl3 under thermal deposition conditions proved to be the best pathway due to the well-

defined monodisperse product. 

  We also studied whether Au metal islands could be effectively removed while 

leaving the CZTS nanocrystals intact. The results of this experiment were mixed. It does 

seem that smaller Au nanoparticles are removed, but larger amalgams remain attached to the 

CZTS nanorods and remain inseparable despite numerous efforts. 

 Finally, CZTS-Au was tested for photocatalytic activity using the model system of 

methylene blue reduction. CZTS-Au was found to convert methylene blue to leucomethylene 

blue at a much higher rate than bare CZTS. These results open up a new area of CZTS-metal 
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heterostructures for the purpose of finding greener photocatalysts for solar-to-chemical 

energy conversion. 
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CHAPTER 1 

INTRODUCTION 

General Introduction 

 This thesis describes progress toward the fabrication of non-toxic, earth abundant 

metal-semiconductor heterostructures for use in solar energy conversion. The proposed 

heterostructures consist of Cu2ZnSnS4 (CZTS) nanorods decorated with Au metal islands 

(Figure 1). The semiconductor nanorods are able to absorb light; generating electron-hole 

pairs (excitons). The Au metal islands promote charge separation and slow recombination of 

the electron-hole pairs. They can also serve as a platform for redox catalysis to take place. 

This work focuses first on the fabrication, control and characterization of these CZTS-Au 

heterostructures. The photocatalytic activity of these heterostructures is then explored with 

the reduction of methylene blue.  

  

    

Figure 1: CZTS-Au photocatalyst design 
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Solar Energy Conversion 

 A reliable source of renewable, carbon-free or carbon-neutral energy is much needed. 

The concentration of CO2 in the atmosphere has been rising since the beginning of the 

industrial age as a result of burning fossil fuels for energy. This has been linked to recent 

climate change and global warming.1-4 The detrimental effects of global warming and rising 

CO2 levels have on the ecosystem is also well documented.5-8 These include the melting of 

polar ice caps, ocean acidification and an increase in extreme weather. It is clear that finding 

an energy source that does not result in additional CO2 or other greenhouse emissions should 

be a priority.   

  A very promising source of cheap, abundant and carbon free energy is the Sun. The 

energy the Earth receives from the Sun in one hour is enough to meet the current energy 

needs of the entire planet for one year.9, 10 This makes solar energy a practically limitless 

energy source if sunlight can be converted to either fuel or chemical energy (photocatalysis) 

or power (photovoltaics). Conversion of solar energy has already been proven feasible with 

the use of photocatalytic and photovoltaic (solar cell) devices. However, solar power is not 

currently cost-effective. Increasing the efficiency and reducing the cost of solar energy 

conversion devices is a very active and competitive area of research.11, 12 Even if it were 

possible to convert sunlight with high-efficiency, there would still be significant problems 

with solar energy. One of the major issues with solar energy is its intermittent nature. During 

the night and when it is cloudy out, solar power output is dramatically reduced. People 

require energy at all times regardless of time or weather. A solution to this problem is to store 

the energy produced from sunlight for later use, either in the form of power (in batteries) or 

as fuel. This method for storing energy also needs to be cost-effective, and have the ability to 
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be scaled up. There are a few proposals for how to accomplish this, but all have problems. 

One such solution would be to simply store the power in batteries. Unfortunately, current 

battery technology does not make this cost-effective and can be an inefficient method of 

storing energy.9 Lithium-ion batteries are too expensive to be used on such a wide-scale, and 

lead-acid batteries have relatively short lifetimes. Other methods of storing energy have been 

proposed such as compressed air, pumped hydro and flywheels, but all have issues with 

scaling and cost.13  

 A promising way of harnessing solar energy and storing it for later usage is to use this 

energy to make chemical bonds.9, 14 This involves using solar energy to drive uphill 

(endergonic or endothermic) chemical reactions that create fuels which can be used as 

needed. One major benefit of this photocatalysis method is that the resulting fuel could be 

used in vehicles in addition to providing power to homes. Splitting water (H2O) to produce 

hydrogen (H2) and oxygen (O2) is easily the most studied system for photocatalytic solar 

energy conversion.15-18 This is an area of research that has been given much attention for 

good reason. Water splitting would provide an energy source, H2, that combusts without 

carbon emissions and only results in water as a by-product. Water is also one of the most 

abundant resources we have on earth, so utilizing it seems to be a wise choice. Another 

interesting photocatalytic system is the reduction of CO2 into more useful hydrocarbon fuels 

or feedstocks.19, 20 This would be effectively carbon-neutral as one could take the CO2 

already found in the atmosphere and re-use it as fuel. One could also think about capturing 

CO2 as it is produced at power plants for sequestration to combat climate change. 

 Both water splitting and CO2 reduction are thermodynamically uphill processes. They 

will require energy to be put into the system in order to drive them forward. Photocatalysts 
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can utilize the energy from the sun to drive these uphill reactions forward. Semiconductor 

nanocrystals have garnered attention for use in photocatalysis.21, 22 

 

Metal-semiconductor heterostructures as photocatalysts 

 Semiconductor nanocrystals are interesting candidates for solar energy conversion 

because they can absorb light to generate electron-hole (exciton) pairs that can be used in 

redox reactions such as water splitting (Figure 2). Light of sufficient energy (photons whose 

energy is equal to or higher than the band gap energy) is absorbed by the semiconductor and 

an electron is promoted from the valence band to the conduction band. This also generates a 

hole in the valence band. The electrons in the conduction band can then reduce a substrate if 

they have a sufficient redox potential. Likewise the holes in the valence band can oxidize a 

substrate. 

 

Figure 2: Diagram depicting how a semiconductor can be used as a photocatalyst. Reprinted 
with permission from J. Phys. Chem. Lett. 2010, 1, 2655-2661. Copyright 2010 © American 
Chemical Society.15 
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  Of particular interest are semiconductor nanorods, which have the ability to generate 

multiple excitons upon irradiation and have a high surface to volume ratio.23, 24 These 

properties are desirable for photocatalysis and for this purpose nanorods are the preferred 

morphology when designing semiconductor photocatalysts.  

 There has been much interest recently in metal-semiconductor heterostructures for 

use in solar energy conversion.25-27 Depositing metal islands on the surface of 

semiconductors is known to enhance photocatalytic activity.28 It is thought that this 

enhancement occurs because metal islands can slow the recombination rate. Electron-hole 

recombination competes directly with any photocatalytic process and is therefore highly 

undesired. In addition to this, noble metal islands have been shown to prevent degradation of 

the semiconductor from photoetching.29 Metal islands can also act as a place for reaction 

with a substrate. These factors led us to believe that semiconductor-metal heterostructures, 

particularly nanorod heterostructures, were an interesting candidate for solar energy 

conversion and worthy of further study.  

 When looking for semiconductor-metal systems to use in photocatalysis, there are 

several key issues to address. It is important that the semiconductor be able to absorb a large 

portion of the visible spectrum, so as to more efficiently utilize the solar energy we receive 

on earth. Another issue is the relative abundance of the elements used in the materials. If 

these systems are to be utilized on a large-scale and be cost-effective, they need to exploit 

elements that are found in many places and are inexpensive. Yet another consideration is the 

toxicity of the material. It would be ideal if the material were relatively non-toxic so as to 

minimize any environmental effects. These materials would likely be used in close proximity 

to cities and homes, so any leaching or waste from the material could affect a large number 
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of people.  These considerations led us to Cu2ZnSnS4 as an interesting semiconductor for use 

in photocatalysis.  

Cu2ZnSnS4 as an Earth-abundant, non-toxic photocatalyst 

 Cu2ZnSnS4 (CZTS) has a bandgap of around 1.5 eV, corresponding to light with a 

wavelength of around 826 nm. This is comparable to CdSe (1.7 eV), which has been studied 

extensively as a photocatalyst. This smaller bandgap means that CZTS can absorb most of 

the solar spectrum. CZTS is also made of relatively earth-abundant materials, in comparison 

with a material such as CdSe.30 It is also considered less toxic than CdSe. All of these factors 

led us to believe that CZTS was an interesting candidate for use in photocatalysis. 

 After choosing a semiconductor material to work with, we needed a method to 

prepare a CZTS-M heterostructure. There are multiple pathways reported in the literature for 

preparing these heterostructures. Thermal and photochemical methods have been used to 

deposit metals onto CdS and CdSe nanorods.31, 32 These syntheses involve the use of metal 

salts as precursors for the noble metal nanoparticles formed on the semiconductor. Another 

approach to fabricating these heterostructures is to use pre-formed metal nanoparticles and 

deposit these onto the surface of the semiconductor.33 Since CZTS is a relatively new 

material, there currently is no research to our knowledge of how best to deposit metal islands. 

We therefore decided it would be prudent to investigate all of the pathways mentioned above, 

and determine the best route to the desired CZTS-M heterostructure. 

 CdSe-Au has been used previously in photocatalysis.34 Because of this, we chose Au 

as the metal to deposit on the surface of CZTS nanorods. Since CZTS and CdSe have similar 

bandgaps and band energy level offsets this would offer a good comparison between the two 

materials. Although Au is by no means an abundant element it will still be a good model 



www.manaraa.com

 
 

 

7 

system to demonstrate photocatalytic activity with. This thesis therefore presents work 

investigating both Au salt precursors and pre-formed Au nanoparticles to deposit Au 

nanoparticles on CZTS nanorods under thermal and photochemical conditions. This thesis 

also presents research on removing the metal islands from the CZTS nanorods. The 

heterostructures were then probed for photocatalytic activity by using methylene blue 

reduction as a model system.  
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CHAPTER 2 

Cu2ZnSnS4-Au HETEROSTRUCTURES: TOWARD GREENER CHALCOGENIDE-
BASED PHOTOCATALYTS 

 
A paper submitted to The Journal of Physical Chemistry C 

 
Patrick S. Dilsaver, Malinda D. Reichert, Brittany L. Hallmark, Michelle J. Thompson, and 

Javier Vela* 

Abstract 

 Chalcogenide-based semiconductor-metal heterostructures are interesting catalysts for 

solar-to-chemical energy conversion, but current compositions are impractical due to the 

relative toxicity and/or scarcity of their constituent elements. To address these concerns, 

Cu2ZnSnS4 (CZTS) emerged as an interesting alternative to other chalcogenide-based 

semiconductors, however the fabrication of CZTS-metal heterostructures remains 

unexplored. In this paper, we systematically explore four methods of synthesizing CZTS-Au 

heterostructures, specifically: Reaction of CZTS nanorods with either a soluble molecular 

gold precursor (AuCl3) or preformed gold (Au) nanoparticles, each under thermal (heating in 

the dark) or photochemical reaction conditions (350 nm lamp illumination at room 

temperature). We find that using AuCl3 under thermal deposition conditions results in the 

most well defined CZTS-Au heterostructures, containing >99% surface-bound 2.1±0.5 nm 

Au islands along the whole length of the nanorod. These CZTS-Au heterostructures are 

photocatalytically active, reducing the model compound methylene blue upon irradiation 

much more effectively than do bare CZTS nanorods. We also demonstrate the removal of Au 

from the CZTS-Au heterostructures by amalgamation. These results open up a new area of 

greener, CZTS-based photocatalysts for solar-to-chemical energy conversion. 
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Introduction 

 Semiconductor-metal hybrid heterostructures are ideal photocatalytic materials for the 

study of solar-to-chemical energy conversion.1-13 Traditionally based on semiconductor 

oxides such as TiO2
14-17, the field of semiconductor-metal hybrids saw a resurgence with the 

advent of colloidal II-VI, III-V and IV-VI semiconductor nanocrystals, particularly those 

made of cadmium and lead chalcogenides.18-25 The semiconductor's photocatalytic activity, 

selectivity and stability greatly depend upon metal modification26, and recent studies show 

that plasmonic effects even enable unprecedented switching and fine-tuning of overall 

photocatalytic behavior.27-29 In an effort to replace cadmium, lead and arsenic-containing 

semiconductors, Cu2ZnSnS4 or “CZTS” recently emerged as one of the photovoltaic 

materials of choice for solar-to-power energy conversion.30-32 Made of Earth abundant, 

widely distributed and relatively biocompatible elements, and with a direct band gap of 1.5 

eV, Cu2ZnSnS4 is an affordable, greener and more sustainable alternative to cadmium and 

lead chalcogenides. However, the use of Cu2ZnSnS4 in photocatalytic semiconductor-metal 

heterostructures for solar-to-chemical energy conversion remains unexplored.33-35 

 Several reviews detail the fabrication and applications of low dimensional CZTS and 

CZTSe nanostructures.36-41 Historically hindered by spontaneous phase segregation into 

binary and ternary impurities, colloidal CZTS nanocrystals are now accessible via solution-

phase synthesis methods.42-47 Anisotropic CZTS nanocrystals (nanorods, nanospindles, 

nanowires) are particularly attractive in order to achieve better charge carrier mobility across 

grain boundaries in photovoltaic cells, as well as more efficient suppression of electron-hole 

pair recombination in photocatalytic devices. Two recent reports looked at the interplay 
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between molecular precursor reactivity, precursor concentration, and the ability to make true 

quaternary anisotropic CZTS nanocrystals (CZTS nanorods).48,49 

 In this paper, we use wurtzite (hexagonal) phase CZTS nanorods as a template for the 

deposition of gold (Au) nanoparticles. More specifically, we learn to deposit Au on CZTS 

using both thermal and photochemical methods from either a molecular gold precursor or 

preformed Au nanoparticles. We then use the resulting semiconductor-metal CZTS-Au 

heterostructures for solar-to-chemical energy conversion using the photocatalytic reduction 

of methylene blue as a model reaction. Finally, we explore the removal or stripping of gold 

particles from CZTS-Au heterostructures via amalgamation upon treatment with mercury 

(Hg). The results of this work will serve as a springboard from which to build other greener, 

cost effective and more active, stable and selective semiconductor-metal hybrid 

heterostructures for solar-to-chemical energy conversion. 

 

Results and Discussion 

 Multiple Metal Modification Methods. As noted in the Introduction above, metal 

heterostructures can be conveniently synthesized by either thermal or photochemical 

methods. Photochemical methods,50-55 including whole flask lamp illumination methods18 

offer many advantages such as control over nanoparticle loading through fine-tuning of the 

illumination or “irradiation” time,56 high selectivity for surface-bound vs. freestanding metal 

particles,18 and selectivity for deposition along the length vs. the tip of anisotropic 

semiconductor particles (rods, wires).57-59 Further, we noted during our work with CdE-M 

heterostructures (E = S or Se, M = Pt, Pd, Au)18,26,27 that pre-existing metal nanoparticles, 

particularly those made of gold (Au), have a tendency to adhere to chalcogenide surfaces. We 
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thus hypothesized that we could deposit Au on CZTS not only from molecular gold 

precursors, but also possibly starting from preformed Au nanoparticles, in each case through 

either thermal or photochemical conditions. 

 

 Metal Deposition from a Molecular Precursor. We started using AuCl3 as a soluble 

molecular precursor under thermal metal deposition conditions (60 °C in the dark, see 

Experimental). Transmission electron microscopy (TEM) showed this thermal procedure 

leads to well defined, monodisperse heterostructures with a homogeneous distribution of Au 

islands along the whole length of the CZTS nanorods (Figure 1a). The Au metal islands have 

an average size of 2.1±0.5 nm (Table 1). The great majority of Au particles (>99%) are 

surface-bound, meaning that they are attached to the surface of the CZTS nanorods. There 

are in average 9±2 Au metal islands per CZTS nanorod. Based on TEM measurements and 

within experimental error, the original length (28±3 nm) and diameter (8±1 nm) or aspect 

ratio (3.5±0.6) of the CZTS nanorods (Figure 2a) are unaffected upon thermal Au deposition 

from AuCl3 (Table 1). 
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Figure 1. Representative TEM images and histograms of CZTS-Au heterostructures 

synthesized from AuCl3 under (a) thermal conditions (60 °C, dark) and (b) under 

photochemical conditions (R.T., 350 nm), and from preformed Au nanoparticles under (c) 

thermal conditions (60 °C, dark) and (d) under photochemical conditions (R.T., 350 nm). 
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Table 1. Thermal and Photochemical Deposition of Au Nanoparticles on CZTS Nanorods.a 

 

Au Precursor 

 

Conditionsb 

Au 

Diametera 

 

%Au Bounda 

 

#Au NP/roda 

CZTS 

Lengtha 

CZTS 

Widtha 

AuCl3 Dark, 60 °C 2.1±0.5 nm > 99% 9±2 28±3 nm 8±1 nm 

AuCl3 350 nm, R.T. 8±6 nm  > 99% 2±1 27±5 nm 6±1 nm 

Au NPsc Dark, 60 °C 2.0±4 nm  64% 2±1 25±3 nm 8±1 nm 

Au NPsc 350 nm, R.T. 2.4±0.6 nm  87% 2±1 26±4 nm 8±1 nm 

aPost-deposition data for the resulting CZTS-Au heterostructures. bIn all cases, the starting CZTS nanorods (before 

deposition) were 28±3 nm long and 8±1 nm wide (aspect ratio ≈ 3.5). cThe starting Au nanoparticles (NPs) were 

2.0±0.4 nm in diameter. (see Experimental for synthetic details) 

  

 

Figure 2. Representative TEM images and histograms for (a) CZTS nanorods (28±3 nm × 

8±1 nm), and (b) independently synthesized preformed Au nanoparticles (2.0±0.4 nm). 

 

 The soluble AuCl3 molecular precursor becomes much more reactive and deposition 

less controlled under photochemical deposition conditions (R.T. ≈ 21-24 °C at 350 nm, see 

Experimental). TEM shows the resulting heterostructures have a wider range of metal 
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particle sizes (Figure 1b). The Au nanoparticles have a bimodal size distribution with an 

average diameter of 8±6 nm (Table 1), although a majority of them (>99%) are also surface-

bound. There is an average of only 2±1, larger Au metal islands per CZTS nanorod. TEM 

appears to indicate that etching of the CZTS occurs during photochemical Au deposition 

from AuCl3, as the nanorod diameter changes from 8±1 nm before deposition to 6±1 nm after 

deposition. However, this difference is statistically insignificant within experimental error 

(Table 1). 

 Metal Deposition from Preformed Au Nanoparticles. We then attempted to use 

independently synthesized, preformed Au nanoparticles with a diameter of 2.0±0.4 nm for 

the synthesis of CZTS-Au heterostructures (Figure 2b). After reaction with CZTS under 

thermal deposition conditions (60 °C in the dark, see Experimental), TEM shows that the 

mean Au nanoparticle size (2.0±0.4 nm) remains similar to that of the preformed Au particles 

before reaction (Figure 1c). This is also comparable to the Au nanoparticle size obtained 

thermally from AuCl3 above. However, in this case only 64% of Au particles are bound to 

the CZTS surface. Counting only surface-bound metal particles, there is an average of 2±1 

Au islands per nanorod (Table 1). There is no evidence of changes in the length or diameter 

of the CZTS nanorods upon Au deposition by this method. 

 Under photochemical deposition conditions (R.T. ≈ 21-24 °C at 350 nm, see 

Experimental), the reaction of preformed Au nanoparticles with CZTS nanorods also results 

in a mixture of freestanding and surface bound gold. The mean Au nanoparticle size remains 

unchanged at 2.4±0.6 nm (Figure 1d). However, 87% of Au nanoparticles are now surface 

bound to the CZTS nanorods, an even higher percentage than that obtained thermally above. 

Counting only surface-bound metal particles, there is an average of 2±1 Au islands per 
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nanorod (Table 1). As in the previous example, there is no evidence of changes in the length 

or diameter of CZTS nanorods upon Au deposition by this method. However, the CZTS 

nanorods appear to be significantly aggregated after deposition. 

 Scheme 1 summarizes all of our deposition results. We note that using AuCl3 as the 

gold precursor consistently leads to higher, near quantitative (100%) formation of surface 

bound Au nanoparticles, likely because of the lower activation energy required for 

heterogeneous (seeded) nucleation of Au on the CZTS surface vs. homogeneous nucleation 

of free Au in solution. Using preformed Au nanoparticles as precursors consistently leads to 

a smaller percentage of surface bound Au particles (64-87%). This percentage is nevertheless 

significant, and clearly demonstrates that nano gold avidly sticks to the soft, chalcogenide 

CZTS surface. The degree of attachment of Au particles is higher when the reaction is carried 

out photochemically (87%) than when it is carried out thermally (64%). It may well be that 

under illumination, enough negative charging occurs (for example, through electron trapping 

at defects sites) to make the CZTS surface even more polarizable and thus softer, increasing 

its affinity toward Au. In our previous work on photodeposition of Pt and Pd on CdSxSe1-x,18 

we showed we could increase the number of surface-bound metal particles to near 100% by 

using a wavelength that selectively excites the semiconductor and not the metal precursor. 

This is difficult to achieve here because there is significant overlap between the absorption 

profiles of CZTS nanorods and the AuCl3 and Au nanoparticle precursors (Figure 3a). 
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Scheme 1. Different pathways and outcomes of Au nanoparticle deposition on CZTS 

nanorods. 

 

 

 

Figure 3. (a) Optical absorption spectra of the AuCl3 molecular precursor, preformed Au 

nanoparticles and CZTS nanorods, and irradiation profile of 350 nm lamps. (b) Optical 

absorption spectra of preformed Au nanoparticles (Au NP), CZTS nanorods and CZTS-Au 

heterostructures obtained from different precursors. 
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 Characterization of CZTS-Au Heterostructures. Figure 3b displays representative 

optical absorption spectra for the CZTS and Au nanoparticle precursors and the synthesized 

CZTS-Au heterostructures. The CZTS nanorods and all CZTS-Au heterostructures share the 

typical semiconductor absorption edge around 850-900 nm and a second bluer hump at 700 

nm. The plasmonic resonance absorption feature at 500 nm observed in the preformed Au 

nanoparticles becomes broader, weakens and blue shifts to about 400 nm in the CZTS-Au 

heterostructures. Figure 4 shows powder X-ray diffraction (XRD) patterns of CZTS nanorods 

and CZTS-Au hybrids, along with standard reference patterns for both CZTS and Au. CZTS 

retains the previously reported wurtzite (hexagonal) structure and Au particles the common 

fcc metal structure.  

 

 

Figure 4. XRD diffraction patterns of CZTS before and after Au deposition. Standard bulk 

patterns for wurtzite (hexagonal) ZnS (in lieu of CZTS)48 and metallic (fcc) Au are shown for 

comparison. The Au peaks are most intense when AuCl3 is used as the gold precursor. 

 



www.manaraa.com

 
 

 

20 

 To further characterize the CZTS nanorods, Au nanoparticles and CZTS-Au 

heterostructures, we used X-ray photoelectron spectroscopy (XPS). Figure 5 shows the Cu 2p 

and Au 4f XPS spectral regions. Cu 2p shows the same binding energy before and after 

deposition. This is an indication that the oxidation state of Cu is unaffected by the deposition 

process. Because there is significant overlap in the binding energy values reported for Cu(I) 

and Cu(II), it is difficult to say with absolute certainty what the Cu oxidation state is in these 

materials from XPS data alone; however, we assume this is Cu(I) based on the known 

composition and crystal structure of CZTS observed by XRD. The CZTS nanorods do not 

show any Au 4f peaks before metal deposition, whereas the preformed Au nanoparticles and 

CZTS-Au heterostructures show characteristic Au 4f peaks (Figure 5). This serves as further 

confirmation that metallic, zerovalent Au was successfully deposited on the surface of the 

CZTS nanorods. 
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Figure 5. X-ray photoelectron spectroscopy (XPS) measurements of CZTS, Au and CZTS-

Au nanostructures. 

 

 Photocatalytic Testing. The bulk band gap and valence and conduction energy levels 

of CZTS are similar to those of CdSe, a relatively better studied semiconductor with 

demonstrated photocatalytic activity (Figure 6). Previous reports showed that CdSe-Au 

hybrids can photocatalytically reduce methylene blue (M.B.) to the colorless product 

lecuomethylene blue (L.B.).60-63 CZTS and CZTS-based heterostructures are therefore good 

catalyst candidates for this reaction, and we sought to use the reduction of methylene blue to 

test the photocatalytic activity of CZTS-Au hybrids. As a stoichiometric or “sacrificial” 

source of electrons, we chose to use an alcohol such as methanol. Reduction of methanol to 
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formaldehyde occurs at a lower potential than the reduction of M.B. to L.B., methanol cannot 

be expected to directly reduce M.B. (Figure 6). However, photogenerated electrons sitting in 

the conduction band of CZTS should have enough energy to reduce M.B., and 

photogenerated holes sitting in the valence band of CZTS should have enough energy to 

oxidize the sacrificial methanol donor, thus replenishing the electrons in the valence band of 

CZTS and regenerating the neutral ground state of the catalyst (Scheme 2). 
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Figure 6. Valence and conduction bulk energy levels reported for CZTS and CdSe 

semiconductors, work functions for Au, Pt and Pd, and reduction potentials for methylene 

blue (M.B.) to leucomethylene blue (L.B.) and a primary alcohol to its aldehyde (such as 

methanol to formaldehyde). The “NQD” levels correspond to the maximum band gap 

widening reported for quantum confined CdSe. Note that Fermi level equilibration could 

significantly raise the energy the level of small Au nanoparticles, up to the conduction band 

of the CZTS semiconductor.64 
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Scheme 2. Photocatalytic reduction of methylene blue to leucomethylene blue over CZTS-

Au heterostructures using an alcohol as sacrificial electron donor. 

 
 

 Photoinduced charge separation normally results in transfer of one carrier (for 

example, electrons) onto the metal islands of semiconductor-metal heterostructures. Figure 6 

shows the energy levels of various metals commonly used in semiconductor-metal 

heterostructures, such as Au, Pt and Pd. From this diagram, it would appear that electrons 

sitting in any of these metals would never have enough energy to react with methylene blue. 

However, it is known and has been shown previously that the electrons transferred to small 

metal islands such as Au metal can significantly increase the electron density within the Au 

nanoparticles, shifting their Fermi level toward more negative potentials.64 This transfer of 

electrons to the metal continues until the Fermi level equilibrates with the conduction band 

edge of the semiconductor, in this case CZTS.64 This explains how electrons transferred to 

the Au metal from the CZTS semiconductor can have enough energy to reduce methylene 

blue (M.B.) to leucomethylene blue (L.B.). 

 Before running any photocatalytic tests and in order to select the best conditions for 

catalyzed methylene blue reduction, we carefully looked at the irradiance profiles of different 
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lamps as well as the optical absorption spectra of methylene blue and CZTS-Au 

heterostructures. As shown in Figure 7a, the light emitted by our 420 nm lamps does not have 

enough energy to directly photoexcite methylene blue, however it can easily photoexcite 

CZTS-based nanostructures such as CZTS-Au. Therefore, we decided to run our 

photocatalytic tests under 420 nm lamp illumination, as this prevents any uncatalyzed, direct 

reduction or other unwanted side-reactions of methylene blue. 

 

 

Figure 7. (a) Optical absorption spectra of methylene blue, CZTS and CZTS-Au, and 

irradiation profile of 420 nm lamps. (b) Optical absorption spectra of methylene blue 

solutions before and after several representative photocatalytic tests under 420 nm 
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illumination and in the absence or presence of different concentrations of CZTS-Au and 

CZTS. 

 

 Figure 7b shows optical absorption spectra of methylene blue solutions before and 

after photocatalytic tests used to probe the reactivity of CZTS-Au. Without a catalyst, the 

peak at λmax = 663 attributed to methylene blue remains virtually unchanged after 10 min 

illumination with the 420 nm lamps. However, when CZTS-Au was present the peak 

intensity decreased by 47% (see Experimental for details). This represents a significant 

reduction in the amount of methylene blue (Figure 8). When the concentration of CZTS-Au 

was cut by 1/5, we saw a 17% conversion of methylene blue. Without metal islands on its 

surface, using CZTS alone only resulted in about 2% conversion. These data are consistent 

with the fact that noble metal islands on the surface of semiconductor nanocrystals greatly 

increase photocatalytic activity. Interestingly, the photocatalytic activity of CZTS-Au 

remained and in some cases even increased after storage in the dark for 60 days (not shown). 
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Figure 8. Bar graph showing relative concentrations of methylene blue (M.B.) and its 

colorless, reduction product leucomethylene blue (L.B.) after 420 nm illumination for 10 min 

in the absence or presence of different concentrations of CZTS-Au and CZTS. 

 

Metal Removal By Amalgamation. An interesting concept in nanochemistry is the ability 

not only to build and assemble nano building blocks into more complex edifices but also to 

break apart and disassemble higher order structures into their separate components.6 With 

this in mind, we sought to probe whether Au nanoparticle islands can be removed from the 

CZTS-Au heterostructures to produce gold-free CZTS nanorods. To this end, we treated 

CZTS-Au heterostructures with a very small amount of liquid mercury metal (Hg, see 

Experimental).65-71 Powder XRD analysis shows that two distinct phases form as a 

consequence of this treatment, namely: A new solid HgAu amalgam, and wurtzite CZTS. 

Consecutive, selective centrifugation allows separating these two phases, at least partially 

(Figure 8). The AuHg amalgam “crashes” or precipitates out of solution first. This AuHg 

amalgam is comprised of large, 10-20 nm particles characterized by their very dark contrast 

in bright field TEM due to their high apparent atomic number (Z) compared to CZTS (Figure 

8a). Likely due to their high affinity for soft surfaces, the AuHg amalgam particles remain 
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bound to a few CZTS nanorods. After a couple of centrifugation cycles, wurtzite CZTS 

becomes the dominant phase observed by XRD and TEM, and the characteristic Au plasmon 

peak is no longer visible in the optical absorption spectrum (Figures 8b,c). All small Au 

particles or islands disappear in favor of larger AuHg ones upon amalgamation.  
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Figure 9. Representative (a, 1st fraction) (b, 3rd fraction) TEM images and (c) optical 

absorption patterns of different consecutive centrifuged fractions obtained after treatment of 

CZTS-Au heterostructures with a small amount of Hg. 
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Figure 10. XRD diffraction patterns of different consecutive centrifuged fractions obtained 

after treatment of CZTS-Au heterostructures with a small amount of Hg. Standard bulk 

patterns for wurtzite (hexagonal) ZnS (in lieu of CZTS),48 and metallic (fcc) Au and AuHg 

alloys are shown for comparison. 

 

Conclusions 

 We explored the fabrication of CZTS-Au heterostructures by a variety of pathways 

utilizing both a molecular gold precursor (AuCl3) and preformed Au nanoparticles under 

thermal and photochemical deposition conditions. The high degree of binding (64-87%) 

observed when using preformed Au nanoparticles demonstrated the high affinity of nano 

gold for the soft chalcogenide CZTS surface; however, this binding was incomplete. Using a 

molecular gold precursor consistently resulted in a higher degree of surface bound Au 

nanoparticles than using preformed Au nanoparticles. Further, our results show that thermal 

deposition with a molecular precursor leads to a more controlled reaction with a homogenous 

distribution of similar-sized Au metal islands along the whole length of CZTS nanorods.  
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We also demonstrated that CZTS-Au heterostructures are active photocatalysts, able to 

reduce methylene blue upon irradiation in the presence of a sacrificial electron donor 

(terminal reductant). Our results indicate that CZTS-Au is a much more active catalyst than 

CZTS alone, showing the synergy that makes heterostructures capable of undergoing 

photoinduced charge separation so attractive. We showed that CZTS-Au heterostructures are 

fairly robust, maintaining photocatalytic activity even after sixty days of dark storage. 

Treatment of CZTS-Au with a small amount of Hg led to the removal of small Au metal 

islands on the surface of the CZTS nanorods. The resulting AuHg amalgam remained 

difficult to separate completely from CZTS, however these results demonstrate a method for 

breaking down a heterostructure into its individual components. In summary, CZTS-metal 

heterostructures are accessible by a variety of synthetic pathways, and show promise for 

potential applications in solar-to-chemical conversion.   

 

 

Methods 

Materials Copper(II) acetylacetonate (Cu(acac)2, 99.99%), methylene blue (>82%), 

mercury (Hg, 99.99%), dodecylamine (98%), didodecyldimethylammonium bromide (98%), 

1-dodecylthiol (98%), tert-dodecylthiol (98.5%), trioctylphosphine oxide (TOPO, 99%) and 

toluene (anhydrous, 99.8%) were purchased from Sigma-Aldrich. Zinc acetate dihydrate 

(Zn(OAc)2•2H2O, 98+%), gold(III) chloride (99.9%) and hydrogen tetrachloroaurate hydrate 

(chloroauric acid hydrate or HAuCl4•H2O, 99.9%) were purchased from Strem Chemicals. 

Tetra-n-octylammonium bromide (98%), sodium borohydride (99%), mercaptosuccinic acid 
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(99%) and 1-octadecene (ODE, 90%) were purchased from Acros. Tin(IV) acetate 

(Sn(OAc)4, 98%) and tetramethylammoniumhydroxide pentahydrate (98%) were purchased 

from Alfa Aesar.  Materials were used as received. 

Synthesis of Precursor Particles. Colloidal CZTS Nanorods. CZTS nanorods were 

prepared according to a previously reported literature procedure. In a typical synthesis, a 

mixture of 1-dodecylthiol (0.52 mmol) and tert-dodecylthiol (t-DDT, 3.7 mmol) were 

injected into a stirring mixture of Cu(acac)2 (0.17 mmol), Zn(OAc)2•2H2O (0.25 mmol), 

Sn(OAc)4 (0.25 mmol), TOPO (1.75 mmol) and 1-octadecene (ODE, 5 mL) in a three-neck 

round bottom (R.B.) flask under argon (Ar) at 120 °C. The solution was heated to 210 °C and 

kept at this temperature for 30 minutes. After cooling to room temperature (R.T.), the 

mixture was twice washed with a 1:1:1 mixture of acetone, ethanol and methanol followed 

by centrifugation at 4,500 rpm for 10 minutes. The product could be readily redispersed in 

toluene. Au Nanoparticles. Au nanoparticles were prepared according to a previously 

reported literature procedure.72 In a typical synthesis, chloroauric acid (96.0 mg, 0.283 

mmol) was dissolved in de-ionized water (10 mL) and tetra-n-octylammonium bromide (736 

mg, 1.35 mmol) was dissolved in toluene (27 mL). The two solutions were combined and 

stirred vigorously until the gold (brown material) transferred to the organic layer. 1-

dodecylthiol (60.5 mg, 0.299 mmol) was then added to the organic layer. A solution of 

sodium borohydride (131 mg, 3.45 mmol) in de-ionized water (8 mL) added slowly to the 

mixture while stirring, and stirring continued for 3 h. The organic phase was separated and 

concentrated under vacuum to a ~10 mL volume. This was washed three times by 

precipitating with ethanol (10 mL) followed by centrifugation at 4,500 rpm for 10 min. The 

product could be readily redispersed in toluene. 
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Synthesis of CZTS-Au Heterostructures. CZTS Stock Solution. CZTS nanorods were 

dissolved in toluene to give an optical density (O.D.) of 1.2 at 800 nm.  A 10 mL volume of 

this solution was degassed, refilled with dry argon, and stored in the dark for ≥ 12 h in a 

three-neck R.B. flask. From AuCl3 Precursor. Under a dry Ar atmosphere, AuCl3 (12.0 mg, 

0.04 mmol), dodecylamine (53.2 mg, 0.29 mmol), and didodecyldimethylammonium 

bromide (38.0 mg, 0.08 mmol) were dissolved in anhydrous toluene (9 mL) and injected into 

the CZTS nanorod solution via syringe.  Deposition was then carried out for 15 min by one 

of two routes: (1) Thermally in the dark, in an oil bath pre-equilibrated at 60 °C, or (2) 

photochemically, under 350 nm illumination at room temperature (R.T., 21-24 °C) in a fan-

cooled Rayonet photoreactor (Southern New England Ultraviolet Company, Branford, CT) 

containing a set of 16 side-on fluorescent lamps and equipped with an air-cooling fan. 

Nonvolatile products were separated by precipitation with a 1:1:1:1 mixture of acetonitrile, 

ethanol, methanol and acetone followed by centrifugation. The product could be readily 

dispersible in toluene. From Au Nanoparticles. Au nanoparticles (see above) were 

dissolved in toluene to give an OD of 0.07 at 520 nm and stored in the dark for ≥ 12 h. The 

Au nanoparticle solution was injected into the CZTS nanorod solution via syringe.  The 

deposition reaction was then carried out for 3 h by one of two routes: (1) Thermally in the 

dark, in an oil bath pre-equilibrated at 60 °C, or (2) photochemically, under 350 nm 

illumination at R.T. in a fan-cooled Rayonet photoreactor containing a set of 16 side-on 

fluorescent lamps and equipped with an air-cooling fan. Nonvolatile products were separated 

by precipitation with a 1:1:1:1 mixture of acetonitrile, ethanol, methanol and acetone 

followed by centrifugation. The product could be readily dispersible in toluene. 
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Transfer of CZTS-Au to Water. CZTS-Au was dissolved in toluene (5 mL) inside a vial. 

A solution of tetramethylammonium hydroxide pentahydrate (420 mg, 2.32 mmol) and 

mercaptosuccinic acid (70 mg, 0.466 mmol) in de-ionized water (5.0 mL) was added, and the 

mixture stirred in the dark overnight. The aqueous layer was separated and washed two times 

with a 1:1 mixture of acetone and methanol followed by centrifugation at 4,500 rpm for 10 

min. The product was readily dispersible in water. 

Photocatalytic Reduction of Methylene Blue. Reduction of methylene blue was carried 

out inside an oven dried quartz cuvette topped with a septum and cap. A typical reaction 

involved 2.5 mL of 2.4 × 10-5 M of methylene blue in a 1:6 v/v alcohol (methanol or ethanol) 

to de-ionized water solution. CZTS-Au (0.5 mL of an aqueous solution with an OD of 0.718 

at 800 nm) was added to the mixture, degassed by sparging with dry Ar for 15 min, and 

placed under 420 nm illumination at R.T. in a fan-cooled Rayonet photoreactor containing a 

set of 16 side-on fluorescent lamps and equipped with an air-cooling fan. 

Au-Stripping. 12 mL of CZTS-Au solution with an OD of 0.44 at 800 nm was placed in a 

glass vial. Mercury (Hg, 103 mg) was added, and the mixture stirred for 12 h in an oil bath 

pre-equilibrated at 60 °C. The non-mercury organic liquid fraction was collected with a 

pipette, and the nonvolatile products were separated by precipitation with a 1:1:1:1 mixture 

of acetonitrile, ethanol, methanol and acetone followed by centrifugation. 

Characterization. Optical absorption spectroscopy was measured with an Agilent 8453 

UV-Vis photodiode array spectrophotometer. Powder X-ray diffraction (XRD) was measured 

using Cu Kα radiation on a Rigaku Ultima U4 diffractometer. Transmission Electron 

Microscopy (TEM) was conducted on carbon-coated copper grids using FEI Tecnai G2 F20 

field emission scanning transmission electron microscope (STEM) at 200 kV (point-to-point 
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resolution <0.25 nm, line-to-line resolution <0.10 nm). Elemental composition was 

characterized by energy-dispersive spectroscopy (EDS). Particle dimensions were measured 

manually or with ImageJ for >200 particles. Average sizes (diameters) are reported ± 

standard deviations. X-ray photoelectron spectroscopy (XPS) was collected on a Physical 

Electronics 5500 Multitechnique system using a standard Al Kα source. Analysis spot size 

was 1x1 mm and the sample was mounted on 2-sided tape (3M). The binding energy values 

were determined using C 1s at 284.8 eV as a reference. 
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CHAPTER 3 

GENERAL CONCLUSIONS 

 In summary, we were able to prepare CZTS-Au heterostructures with demonstrated 

photocatalytic properties. CZTS-Au was prepared in 4 separate pathways, utilizing AuCl3 or 

pre-formed Au NPs under thermal or photochemical conditions. The precursor and 

conditions greatly affected the quality of the resulting heterostructures. It was determined for 

our system that using AuCl3 under thermal conditions resulted in the most well-defined, 

monodisperse product with a high number of small Au NPs per nanorod.  

 We were further able to demonstrate that Au NPs could be removed after the 

deposition process. To do this we utilized the affinity that Hg has for Au. Although there was 

no sign of small Au NPs remaining on the CZTS nanorods, it was apparent that larger Au-Hg 

amalgams were still bound to the soft surface of CZTS and these larger amalgams were not 

separable from the CZTS nanorods. This work demonstrates the ability to break apart higher-

ordered heterostructures into their components and remains an important goal in the control 

over nanoscale materials. 

 After synthesizing these heterostructures and demonstrating control over them, we 

then chose the model system of methylene blue to demonstrate the photocatalytic properties 

of CZTS-Au. The heterostructures successfully reduced methylene blue with a conversion 

rate similar to that reported for CdSe-Au. Furthermore CZTS-Au had a significantly higher 

conversion rate than CZTS alone which is consistent with the view that metal islands can 

greatly increase photocatalytic activity. Further studies showed the catalyst remained active 

after 60 days storage in water demonstrating the robustness of the material. We believe this 
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may be in part due to the stabilizing effect of Au metal islands on the CZTS nanorods, which 

is yet another potential benefit to these heterostructures.  

 This work represents progress toward the goal of finding more earth-abundant, non-

toxic materials for use in solar energy conversion. We can achieve similar conversion rates to 

that of CdSe-Au utilizing a material with more abundant and less toxic elements. The 

material is also fairly robust and can be stored in water. Future work will center on testing the 

activity of the material in more useful photocatalytic reactions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	2014
	Cu2ZnSnS4-Au heterostructures: Toward green photocatalytic materials active under visible light
	Patrick Steven Dilsaver
	Recommended Citation


	Microsoft Word - Pat_Dilsaver_Thesis_Final.docx

